3.2185 \(\int \frac{d+e x}{a+b x+c x^2} \, dx\)

Optimal. Leaf size=66 \[ \frac{e \log \left (a+b x+c x^2\right )}{2 c}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{c \sqrt{b^2-4 a c}} \]

[Out]

-(((2*c*d - b*e)*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(c*Sqrt[b^2 - 4*a*c])) + (e*Log[a + b*x + c*x^2])/(2*
c)

________________________________________________________________________________________

Rubi [A]  time = 0.0353811, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {634, 618, 206, 628} \[ \frac{e \log \left (a+b x+c x^2\right )}{2 c}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{c \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)/(a + b*x + c*x^2),x]

[Out]

-(((2*c*d - b*e)*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(c*Sqrt[b^2 - 4*a*c])) + (e*Log[a + b*x + c*x^2])/(2*
c)

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{d+e x}{a+b x+c x^2} \, dx &=\frac{e \int \frac{b+2 c x}{a+b x+c x^2} \, dx}{2 c}+\frac{(2 c d-b e) \int \frac{1}{a+b x+c x^2} \, dx}{2 c}\\ &=\frac{e \log \left (a+b x+c x^2\right )}{2 c}-\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{c}\\ &=-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{c \sqrt{b^2-4 a c}}+\frac{e \log \left (a+b x+c x^2\right )}{2 c}\\ \end{align*}

Mathematica [A]  time = 0.0583736, size = 66, normalized size = 1. \[ \frac{e \log (a+x (b+c x))-\frac{2 (b e-2 c d) \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}}}{2 c} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)/(a + b*x + c*x^2),x]

[Out]

((-2*(-2*c*d + b*e)*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*c] + e*Log[a + x*(b + c*x)])/(2*c)

________________________________________________________________________________________

Maple [A]  time = 0.15, size = 93, normalized size = 1.4 \begin{align*}{\frac{e\ln \left ( c{x}^{2}+bx+a \right ) }{2\,c}}+2\,{\frac{d}{\sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }-{\frac{be}{c}\arctan \left ({(2\,cx+b){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \right ){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(c*x^2+b*x+a),x)

[Out]

1/2*e*ln(c*x^2+b*x+a)/c+2/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))*d-1/(4*a*c-b^2)^(1/2)*arctan((
2*c*x+b)/(4*a*c-b^2)^(1/2))*b*e/c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.02945, size = 464, normalized size = 7.03 \begin{align*} \left [\frac{{\left (b^{2} - 4 \, a c\right )} e \log \left (c x^{2} + b x + a\right ) - \sqrt{b^{2} - 4 \, a c}{\left (2 \, c d - b e\right )} \log \left (\frac{2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c + \sqrt{b^{2} - 4 \, a c}{\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right )}{2 \,{\left (b^{2} c - 4 \, a c^{2}\right )}}, \frac{{\left (b^{2} - 4 \, a c\right )} e \log \left (c x^{2} + b x + a\right ) - 2 \, \sqrt{-b^{2} + 4 \, a c}{\left (2 \, c d - b e\right )} \arctan \left (-\frac{\sqrt{-b^{2} + 4 \, a c}{\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right )}{2 \,{\left (b^{2} c - 4 \, a c^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

[1/2*((b^2 - 4*a*c)*e*log(c*x^2 + b*x + a) - sqrt(b^2 - 4*a*c)*(2*c*d - b*e)*log((2*c^2*x^2 + 2*b*c*x + b^2 -
2*a*c + sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)))/(b^2*c - 4*a*c^2), 1/2*((b^2 - 4*a*c)*e*log(c*x^2 +
 b*x + a) - 2*sqrt(-b^2 + 4*a*c)*(2*c*d - b*e)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)))/(b^2*c -
 4*a*c^2)]

________________________________________________________________________________________

Sympy [B]  time = 0.661877, size = 280, normalized size = 4.24 \begin{align*} \left (\frac{e}{2 c} - \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{2 c \left (4 a c - b^{2}\right )}\right ) \log{\left (x + \frac{- 4 a c \left (\frac{e}{2 c} - \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{2 c \left (4 a c - b^{2}\right )}\right ) + 2 a e + b^{2} \left (\frac{e}{2 c} - \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{2 c \left (4 a c - b^{2}\right )}\right ) - b d}{b e - 2 c d} \right )} + \left (\frac{e}{2 c} + \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{2 c \left (4 a c - b^{2}\right )}\right ) \log{\left (x + \frac{- 4 a c \left (\frac{e}{2 c} + \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{2 c \left (4 a c - b^{2}\right )}\right ) + 2 a e + b^{2} \left (\frac{e}{2 c} + \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{2 c \left (4 a c - b^{2}\right )}\right ) - b d}{b e - 2 c d} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x**2+b*x+a),x)

[Out]

(e/(2*c) - sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(2*c*(4*a*c - b**2)))*log(x + (-4*a*c*(e/(2*c) - sqrt(-4*a*c + b*
*2)*(b*e - 2*c*d)/(2*c*(4*a*c - b**2))) + 2*a*e + b**2*(e/(2*c) - sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(2*c*(4*a*
c - b**2))) - b*d)/(b*e - 2*c*d)) + (e/(2*c) + sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(2*c*(4*a*c - b**2)))*log(x +
 (-4*a*c*(e/(2*c) + sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(2*c*(4*a*c - b**2))) + 2*a*e + b**2*(e/(2*c) + sqrt(-4*
a*c + b**2)*(b*e - 2*c*d)/(2*c*(4*a*c - b**2))) - b*d)/(b*e - 2*c*d))

________________________________________________________________________________________

Giac [A]  time = 1.10449, size = 88, normalized size = 1.33 \begin{align*} \frac{e \log \left (c x^{2} + b x + a\right )}{2 \, c} + \frac{{\left (2 \, c d - b e\right )} \arctan \left (\frac{2 \, c x + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{\sqrt{-b^{2} + 4 \, a c} c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

1/2*e*log(c*x^2 + b*x + a)/c + (2*c*d - b*e)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/(sqrt(-b^2 + 4*a*c)*c)